Compounds with Bridgehead Nitrogen. Part 47.1 The Reaction between trans-1-Aminobenzocycloalkan-2-ols and Formaldehyde

Peter M. R. Barkworth and Trevor A. Crabb *
Department of Chemistry, Portsmouth Polytechnic, Portsmouth, Hampshire PO1 2DT
Paul Robinson
Admiralty Marine Technology Establishment, Dockyard Laboratory, H.M. Naval Base, Portsmouth, Hampshire PO1 3LZ

Abstract

The reaction between trans-1-aminoindan-2-ol and formaldehyde and between trans-1-amino-1,2,3,4-tetrahydronaphthalen-2-ol and formaldehyde yields $5, r-5 a, t-8 a, 13, c-13 a, t-16 a-h e x a h y d r o-8,16-m e t h-$ anodi-indeno[1,2-d: $\left.1^{\prime}, 2^{\prime}-i\right][1,6,3,8]$ dioxadiazecine and 5,6,r-6a, $c-9 a, 14,15, t-15 a, t-18 \mathrm{a}$-octahydro-9,18-methanodinaphtho [1,2- $\left.d^{\prime} 1^{\prime}, 2^{\prime}-i\right][1,6,3,8]$ dioxadiazecine respectively whereas the reaction between trans-1-amino-2-hydroxy-6,7,8,9-tetrahydro-5H-benzocycloheptane and formaldehyde yields bis(1,3a,4,5,6,10b-hexahydro-2H-benzo[6,7]cyclohept[1,2-d]oxazol-1-yl)methanes.

The condensation reaction between trans-2-aminocycloalkanols (1) and formaldehyde to give either bis(perhydro-cycloalkano-oxazol-3-yl)methanes (2) or N, N^{\prime}-methanoperhydrodicycloalkano $[d, i][1,6,3,8]$ dioxadiazecines (3) is dependent upon ring fusion strain in the two types of dimer. ${ }^{2}$ In order to investigate this further, the reactions between various 1-aminobenzocycloalkan-2-ols (4)-(6) and formaldehyde were chosen for study.
(i) Reaction between trans-1-Aminoindan-2-ol and Form-aldehyde.-The reaction between trans-1-aminoindan-2-ol (4) and formaldehyde gave a crystalline product, m.p. 205$206{ }^{\circ} \mathrm{C}$, with the empirical formula $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}\left(M^{+} 334\right)$ consistent with a dimeric product of structure (7) or (10).

Analysis of the ${ }^{1} \mathrm{H}$ n.m.r. spectrum (Table 1) reveals an AB quartet ($\delta 4.92,4.57, J_{g e m}-11.0 \mathrm{~Hz}$) equivalent to four protons, assigned to the $\mathrm{OCH}_{2} \mathrm{~N}$ methylene protons. $J_{g e m}$ Values for the $\mathrm{NCH}_{2} \mathrm{O}$ protons in 1,3-oxazolidines have been shown ${ }^{3}$ to lie between -2.5 and -6.2 Hz , while values in hexahydro-1,3-oxazepines ${ }^{4}$ lie in the range -11.0 to -12.8 Hz . The observed $J_{g e m}$ of -11.0 Hz is therefore consistent with structure (7) rather than (10). The $\mathrm{NCH}_{2} \mathrm{~N}$ protons absorb as a singlet equivalent to two protons at $\delta 4.65$. The angular CHN protons are represented by a doublet equivalent to two protons at $\delta 4.69(J 9.4 \mathrm{~Hz})$ and the angular CHO protons by a multiplet at $\delta 4.39$. Analysis of these angular proton signals gives $J_{\mathrm{NCH}, \text { осн }}$ of 9.8 Hz confirming the trans ring fusion. The methylene protons in the five-membered ring give rise to two multiplets centred at $\delta 3.13$ and 3.00 . The simplicity of this spectrum is indicative of C_{2} symmetry with each proton in one half of the molecule in an identical environment to its counterpart in the other half. Thus the spectral evidence leads to the assignment of structure $5, r-5 \mathrm{a}, t-8 \mathrm{a}, 13, c-13 \mathrm{a}, t-16 \mathrm{a}$-hexahydro-8,16-methanodi-indeno[1,2-d:1', $\left.2^{\prime}-i\right][1,6,3,8]$ dioxadiazecine (13) to the product of the reaction between trans-1-amino-indan-2-ol and formaldehyde.
(ii) Reaction between trans-1-Amino-1,2,3,4-tetrahydro-naphthalen-2-ol and Formaldehyde.-The reaction between trans-1-amino-1,2,3,4-tetrahydronaphthalen-2-ol and excess of aqueous formaldehyde gave a crystalline product, m.p. $186^{\circ} \mathrm{C}$ with the molecular formula $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}\left(M^{+} 362\right)$. Thus, ignoring stereochemistry at the ring junctions, a dimer of the type (8) or (11) was indicated.

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the reaction product (the Figure shows the spectrum recorded in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~N}$) was much more complicated than that of (13) and selective decoupling experi-

(1)

(2)

(3)
ments were necessary in order to analyse the spectrum (CDCl_{3} solution).

Irradiation of the doublets at $\delta 5.1$ and 4.4 caused the peaks centred at $\delta 4.6$ and 4.1 to collapse to singlets, thus locating the position of two $\mathrm{NCH}_{2} \mathrm{O}$ AB quartets $\left(J_{g e m}-11.1\right.$ and -11.4 Hz respectively). The magnitudes of these $J_{g e m}$ values indicate structure (8) rather than (11). A third AB quartet ($\delta 4.4,4.1$, $J_{g e m}-14.7 \mathrm{~Hz}$) was assigned to the $\mathrm{NCH}_{2} \mathrm{~N}$ protons in (8).

Irradiation of the doublet centred at $\delta 4.3$ caused the triplet of doublets centred at $\delta 3.7$ to collapse to a doublet of doublets. Thus the $\delta 4.3$ doublet may be assigned to the angular CHN proton ($9 \mathrm{a}-\mathrm{H}$) and the triplet of doublets at $\delta 3.7$ to the angular CHO proton ($6 \mathrm{a}-\mathrm{H}$). Similarly the doublet at $\delta 4.4$ and the (masked) triplet of doublets at $\delta 4.6$ may be assigned to the remaining angular $\mathrm{CHN}(18 \mathrm{a}-\mathrm{H})$ and CHO $(15 \mathrm{a}-\mathrm{H})$ protons, respectively. The value of the vicinal coupling constant involving both the CHN protons was found to be 10.2 Hz . Analysis of the signals arising from the angular CHO protons gave $J_{v i c} 10.2,10.2$, and 4.9 Hz for $6 \mathrm{a}-\mathrm{H}$ and $J_{\text {vic }} 10.2,10.2$, and 4.4 Hz for $15 \mathrm{a}-\mathrm{H}$. The large coupling values support the trans arrangement of the bridgehead hydrogens. The $6-\mathrm{H}_{a x}$ and $15-\mathrm{H}_{a x}$ protons absorbed as separate multiplets at $\delta 2.05$ and 1.8 with the corresponding equatorial protons absorbing at $\delta 2.15$. The remaining $C(5)$ and $C(14)$ methylene protons absorbed together at $\delta 3.0\left(\mathrm{H}_{e q}\right)$ and $2.8\left(\mathrm{H}_{a x}\right)$.

The appearance of two AB quartets for the $\mathrm{NCH}_{2} \mathrm{O}$ protons, the doubling of the signals for the angular CHO and CHN protons as well as the observed AB quartet for the $\mathrm{NCH}_{2} \mathrm{~N}$ protons indicate the assignment of the $5,6, r-6 \mathrm{a}, c-9 \mathrm{a}, 14,15, t$ $15 \mathrm{a}, t$-18a-octahydro-9,18-methanodinaphtho $\left[1,2-d: 1^{\prime}, 2^{\prime}-i\right]$ [$1,6,3,8$]dioxadiazecine structure (14) to the dimer.

This structure is clearly supported by the ${ }^{13} \mathrm{C}$ n.m.r. spectrum

Table 1. ${ }^{1} \mathrm{H}$ N.m.r. spectra $\left(\mathrm{CDCl}_{3}\right)$ of dimers (13), (14), (15), and (16)

	Chemical shift (δ)			
Compound	$\mathrm{NCH}_{2} \mathrm{O}$	$\mathrm{NCH}_{2} \mathrm{~N}$	CHO	CHN
(13)	$\begin{aligned} & 4.92,4.57 \\ & \left(J_{g e m}-11.0\right)^{*} \end{aligned}$	4.65	$\begin{aligned} & 4.39 \\ & (J .9 .4,9.8,7.4) \end{aligned}$	4.69
(14)	$\begin{aligned} & 5.1,4.6 \\ & \left(J_{g e m}-11.4\right) \\ & 4.4,4.1 \end{aligned}$	$\begin{aligned} & 4.4,4.1 \\ & \left(J_{g e m}-14.7\right) \end{aligned}$	$\begin{aligned} & 3.7(6 \mathrm{a}-\mathrm{H}) \\ & (J 10.2,10.2,4.9) \\ & 4.6(15 \mathrm{a}-\mathrm{H}) \end{aligned}$	4.3 (9a-H) $4.4(18 a-H)$
(15)	$\begin{aligned} & \left(J_{g e m}-11.1\right) \\ & 4.97,4.73 \\ & \left(J_{g e m}-4.9\right) \end{aligned}$	3.58	$\begin{aligned} & (J 10.2,10.2,4.4) \\ & 3.38 \end{aligned}$	$\begin{aligned} & 3.88 \\ & (J 8.8) \end{aligned}$
(16)	$\begin{aligned} & 4.74,4.41 \\ & \left(J_{g e m}-6.3\right) \end{aligned}$	$\begin{aligned} & 3.97,3.66 \\ & \left(J_{g e m}-7.8\right) \end{aligned}$	3.20	$\begin{aligned} & 3.69 \\ & (J 8.8) \end{aligned}$

* J in Hz .

(4) $n=1$
(5) $n=2$
(6) $n=3$

(7) $n=1$
(8) $n=2$
(9) $n=3$

(10) $n=1$
(11) $n=2$
(12) $n=3$
(Table 2). The ${ }^{13} \mathrm{C}$ n.m.r. proton-decoupled spectrum showed absorptions for twenty-three carbon nuclei. The four quaternary aromatic nuclei absorbed downfield of the remaining eight aromatic carbons. Of the remaining nuclei $\mathrm{C}(5)$, $C(6), C(14)$, and $C(15)$ absorbed between $\delta 28.5-31.4$ which are typical shift values for such nuclei. The remaining signals were assigned on the basis of the known electronegativity effects on ${ }^{13} \mathrm{C}$ chemical shifts. ${ }^{5}$ The $\mathrm{C}(9 \mathrm{a})$ and $\mathrm{C}(18 \mathrm{a})$ angular CHN nuclei were observed at $\delta 64.7$ and $65.0, c a .15$ p.p.m. upfield from the angular CHO nuclei [C(6a) and $\mathrm{C}(15 \mathrm{a})$] which absorbed at $\delta 78.3$ and 82.4. The $\mathrm{NCH}_{2} \mathrm{O}$ nuclei absorbed at $\delta 83.0$ and 83.6 with the $\mathrm{NCH}_{2} \mathrm{~N}$ carbon nucleus at δ 69.7.
(iii) Reaction between trans-1-Amino-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-ol and Excess of Formaldehyde.-The condensation between trans-1-amino-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-ol (6) and excess of formaldehyde gave a

Table 2. ${ }^{13} \mathrm{C}$ N.m.r. spectrum of $5,6, r-6 \mathrm{a}, \mathrm{c}-9 \mathrm{a}, 14,15, t-15 \mathrm{a}, t-18 \mathrm{a}-o c t a-$ hydro-9,18-methanodinaphtho $\left[1,2-d: 1^{\prime}, 2^{\prime}-i\right][1,6,3,8]$ dioxadiazecine (14)

Carbon nucleus	Chemical shift (δ)	$J\left({ }^{13} \mathrm{C}-\mathrm{H}\right)(\mathrm{Hz})$
$\mathrm{C}(8), \mathrm{C}(17)$	83.0	152.5
$\mathrm{C}(6 \mathrm{a}), \mathrm{C}(15 \mathrm{a})$	83.6	152.5
	82.4	136.0
$\mathrm{C}(19)$	78.3	136.0
$\mathrm{C}(9 \mathrm{a}), \mathrm{C}(18 \mathrm{a})$	69.7	145.0
	65.0	136.0
	64.7	136.0

(14)
crystalline product, m.p. $167-170^{\circ} \mathrm{C}$ with the empirical formula $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}\left(M^{+} 390\right)$, indicating a dimeric structure (9) or (12). The $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum showed some considerable differences from those obtained for the dimers (13) and (14) with doubling of most of the signals (Table 1).

The two downfield AB quartets at $\delta 4.97$ and 4.73 ($J_{g e m}$ $-4.9 \mathrm{~Hz})$ and at $\delta 4.74$ and $4.41\left(J_{g e m}-6.3 \mathrm{~Hz}\right)$ gave chemical shifts consistent with $\mathrm{NCH}_{2} \mathrm{O}$ methylene protons. The $J_{g e m}$ values are not in agreement with a dimeric structure containing a central perhydro-3,8-methano[1,6,3,8]dioxadiazecine ring as in (13) and (14), but are consistent with $\mathrm{NCH}_{2} \mathrm{O}$ protons in 1,3-oxazolidines. ${ }^{3}$

Absorption for two sets of $\mathrm{NCH}_{2} \mathrm{~N}$ protons was observed as an AB quartet at $\delta 3.97$ and $3.66\left(J_{g e m}-7.8 \mathrm{~Hz}\right)$ and a singlet at δ 3.58. Two sets of doublets arising from the angular CHN protons appeared at $\delta 3.88$ and 3.69 with $J_{v i c}$

Figure. $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ N.m.r. spectrum of $5,6, r-6 \mathrm{a}, \mathrm{c}-9 \mathrm{a}, 14,15, t-15 \mathrm{a}, t-18 \mathrm{a}$-octahydro- 9,18 -methanodinaphtho $\left[1,2-d: 1^{\prime}, 2^{\prime}-i\right][1,6,3,8]-$ dioxadiazecine (8) in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~N}$ ($\delta 5.2-2.0$)

(15)

(19)

(16)
8.8 Hz . The angular CHO protons absorb as two sets of doublets of triplets at $\delta 3.38$ and 3.20. The near trans-diaxial arrangement of the CHN and CHO angular protons is demonstrated by the vicinal coupling of 8.8 Hz . The observation of two separate sets of signals for each type of proton, the equal intensities of these, and the values of $J_{g e m}$ for the $\mathrm{NCH}_{2} \mathrm{O}$ protons indicate the formation of a $50: 50$ mixture of the two isomers (15) and (16) of bis(1,3a,4,5,6,10b-hexa-hydro-2H-benzo[6,7]cyclohept[1,2- d]oxazol-1-yl)methane.

Discussion

The reaction between the trans-1-aminobenzocycloalkan-2-ols (4), (5), and (6) and formaldehyde gives rise to dimeric products of different structures [(13)-(16)]. The structures of these dimers may be compared to those [(17)-(20)] obtained

(18)

(20)

(17)
from the analogous trans-1-aminocycloalkan-2-ols (1; $n=$ 1,2 , or 3).

The formation of the dimers (13), and (15) and (16), are exactly analogous to the formation of dimers (17), and (19) and (20), from the corresponding aminocycloalkanols. The formation of the different dimers are again attributed to differences in ring fusion strain ${ }^{2}$ and require no further comment.

In contrast, whereas trans-2-aminocyclohexanol (1; $n=2$) condenses with formaldehyde to form the dimer (18) possessing C_{2} symmetry, trans-1-amino-1,2,3,4-tetrahydronaphth-alen-2-ol (5) condenses with formaldehyde to form the asymmetric dimer (14). This difference in the stereochemistry of the condensation products must reflect changes in nonbonding interactions between the two systems resulting from replacement of the cyclohexane ring in (18) by a half-chair in (14) and from the presence of interactions involving the $\mathrm{C}(1)^{-} \mathrm{H}$ and $\mathrm{C}(10)-\mathrm{H}$ bonds of the aromatic rings in the
$r-6 \mathrm{a}, t-9 \mathrm{a}, c-15 \mathrm{a}, t-18 \mathrm{a}$-isomer of (14). A close examination of the Figure shows minor peaks throughout the spectrum possibly due to the presence of a small amount of this isomer.

Experimental

Elemental analyses were carried out by the Butterworth Microanalytical Consultancy, Teddington, Middlesex. The ${ }^{1}$ H n.m.r. spectra were recorded on Varian T60, Jeol PMX-60, and Bruker WH 270 spectrometers as 10% solutions with tetramethylsilane as internal reference. The ${ }^{13} \mathrm{C}$ n.m.r. spectrum was obtained from Jeol (U.K.) Ltd, Colindale, London, on a Jeol FX200 spectrometer operating at 50.184 MHz ; spectral width 12000 Hz (decoupled) and 6000 Hz (coupled) with 6000 data points, pulse width $9 \mu \mathrm{~s}$. Samples were dissolved in equal volumes of CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~N}$ with SiMe_{4} as an internal reference. Mass spectra were obtained at 70 eV on a MSE20 Organic Mass Spectrometer. Ether refers to diethyl ether.
trans-1-Aminoindan-2-ol.-1,2-Epoxyindan ($0.38 \mathrm{~m}, 50 \mathrm{~g}$) was heated with aqueous ammonium hydroxide ($d 0.88$; $54.6 \mathrm{M} ; 370 \mathrm{ml}$) and ethanol (75 ml) in a high pressure steel autoclave at $120-140^{\circ} \mathrm{C}$ for 4 h . Solvents were removed by distillation and the product recrystallised from water to yield trans-1-aminoindan-2-ol ($32.6 \mathrm{~g}, 57.7 \%$), m.p. $123-124^{\circ} \mathrm{C}$ (lit., ${ }^{6} 128-129^{\circ} \mathrm{C}$) (Found: C, 72.1; H, 7.3; N, 9.6. Calc. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 72.4 ; \mathrm{H}, 7.4 ; \mathrm{N}, 9.4 \%$).
trans-1-Amino-1,2,3,4-tetrahydronaphthalen-2-ol.-1,2-
Epoxy-1,2,3,4-tetrahydronaphthalene ($0.1 \mathrm{~mol}, 14.6 \mathrm{~g}$) was shaken with aqueous ammonium hydroxide ($d 0.88 ; 0.3 \mathrm{~mol}$; 21.5 ml) in a stainless steel autoclave for 3 h at a temperature of $120^{\circ} \mathrm{C}$. The solvent was removed by distillation and the residue distilled under reduced pressure to yield a colourless liquid which solidified rapidly on cooling. The solid was recrystallised from cyclohexane to yield trans-1-amino-1,2,3,4-tetrahydronaphthalen-2-ol ($9 \mathrm{~g}, 55 \%$), m.p. $115-116^{\circ} \mathrm{C}$ (lit., ${ }^{7} 116.5-117.5^{\circ} \mathrm{C}$) (Found: C, 73.3; H, 8.1; N, 8.3. Calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 73.6 ; \mathrm{H}, 8.0 ; \mathrm{N}, 8.6 \%$).
trans-1-Amino-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-ol. -1,2-Epoxy-6,7,8,9-tetrahydro-5H-benzocycloheptene
$(0.05 \mathrm{~m}, 9 \mathrm{~g})$ was heated with aqueous ammonium hydroxide ($d 0.88 ; 1.12 \mathrm{~m} ; 100 \mathrm{ml}$) and ethanol (20 ml) at $120^{\circ} \mathrm{C}$ for 2 h . The precipitated solid was removed by filtration and recrystallised from ethanol to yield trans-1-amino-6,7,8,9-tetrahydro$5 H$-benzocyclohepten-2-ol ($4.7 \mathrm{~g}, 47.1 \%$), m.p. $160-162^{\circ} \mathrm{C}$ (lit., ${ }^{8} 161-162^{\circ} \mathrm{C}$) (Found: C, 74.4; H, 8.4; N, 8.0. Calc. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 74.5$; H, 8.3; N, 7.9%).

5,5a,8a,13,13a,16a-Hexahydro-8,16-methanodi-indeno-[1,2-d:1', $\left.2^{\prime}-\mathrm{i}\right][1,6,3,8]$ dioxadiazecine.-trans-1-Aminoindan-2ol $(0.02 \mathrm{~m} ; 3 \mathrm{~g})$ suspended in water (10 ml) was shaken with 40% aqueous formaldehyde solution $(0.06 \mathrm{~m} ; 4.5 \mathrm{ml})$ at room temperature for 0.5 h . The mixture was basified with 50% aqueous sodium hydroxide and extracted with ether. The combined ether extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the ether removed by distillation to yield a white solid which on
recrystallisation from ethanol gave $5, \mathrm{r}-5 \mathrm{a}, \mathrm{t}-8 \mathrm{a}, 13, \mathrm{c}-13 \mathrm{a}, \mathrm{t}-16 \mathrm{a}-$ hexahydro-8,16-methanodi-indeno[1,2-d:1',2'-i][1,6,3,8]dioxadiazecine ($1.1 \mathrm{~g}, 32.7 \%$), m.p. $205-206^{\circ} \mathrm{C}$ (Found: C, $75.3 ; \mathrm{H}, 6.7 ; \mathrm{N}, 8.2 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}, 6.6$; $\mathrm{N}, 8.4 \%$).

5,6,6a,9a,14,15,15a,18a-Octahydro-9,18-methanodinaphtho-[1,2-d:1', 2^{\prime} - i$][1,6,3,8]$ dioxadiazecine (14).-trans-1-Amino-1,2,3,4-tetrahydronaphthalen-2-ol $(0.025 \mathrm{~m} ; 4 \mathrm{~g})$ suspended in water (12.5 ml) was shaken with 40% aqueous formaldehyde solution ($0.1 \mathrm{~m} ; 7.5 \mathrm{ml}$) for 0.5 h at room temperature. The mixture was basified with 50% aqueous sodium hydroxide and extracted with ether. The combined ether extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the ether removed by distillation to yield a white solid which on recrystallisation from ethanol gave 5,6,r-6a,c-9a,14,15,t-15a,t-18a-octahydro-9,18-methanodi-
naphtho[1,2-d:1'2'-i] [1,6,3,8]dioxadiazecine (14) ($1.5 \mathrm{~g}, 16.6 \%$), m.p. $184-185{ }^{\circ} \mathrm{C}$ (Found: C, $74.9 ; \mathrm{H}, 7.0 ; \mathrm{N}, 8.0 . \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.2 ; \mathrm{H}, 7.2 ; \mathrm{N}, 7.7 \%$).

Bis(1,3a,4,5,6,10b-hexahydro-2H-benzo[6,7]cyclohept-

 [1,2-d]oxazol-1-yl)methanes (15) and (16)--trans-1-Amino-6,7,8,9-tetrahydro- 5 H -benzocyclohepten-2-ol (0.03 m ; 5 g) dissolved in water (10 ml) was shaken with 40% aqueous formaldehyde solution $(0.07 \mathrm{~m} ; 5 \mathrm{ml})$ at room temperature for 0.5 h . The mixture was basified with 50% aqueous sodium hydroxide and extracted with ether. The combined ether extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the ether removed by distillation to yield a white solid which on recrystallisation from ethanol gave a 50 : 50 mixture of isomeric bis(1,3a,4,5,-6,10b-hexahydro-2H-benzo[6,7]cylohept [1,2-d]oxazol-1-yl)methanes (15) and (16) ($2.0 \mathrm{~g}, 36.3 \%$), m.p. $167-170{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 76.7; H, 7.9; N, 7.0. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.9 ; \mathrm{H}, 7.7 ; \mathrm{N}, 7.2 \%$).
Acknowledgements

This work was carried out with the support of the Procurement Executive, Ministry of Defence.

References

1 Part 46, T. A. Crabb and J. Rouse, Org. Magn. Reson., 1983, in the press.
2 P. M. R. Barkworth and T. A. Crabb, J. Chem. Soc., Perkin Trans. 2, 1982, 91.
3 R. C. Cookson, T. A. Crabb, J. J. Frankel, and J. Hudec, Tetrahedron, 1966, Supplement 7, 355.
4 R. Cahill, T. A. Crabb, and D. A. Whiting, J. Chem. Soc., Perkin Trans. 2, 1976, 1312.
5 G. C. Levy and G. L. Nelson, 'Carbon-13 Nuclear Magnetic Resonance for Organic Chemicals,' Wiley-Interscience, New York, 1972
6 W. J. Pope and J. Reed, J. Chem. Soc., 1911, 2071.
7 K. Blaha, J. Kovar, R. Lukes, and J. Pitha, Collect. Czech. Chem. Commun., 1960, 25, 492.
8 A. E. Drukker and C. I. Judd, U.S.P., 3836 534/1974.
Received 9th May 1983; Paper 3/728

